Home
Class 12
MATHS
Find the domain of f(x) = 1+(2|x-1|)/x+x...

Find the domain of `f(x) = 1+(2|x-1|)/x+x^2+cos^-1(1+[x])/({x})`,where [.] denotes greatest integer function and {*} denotes fractional part.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve 1/([x])+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

The domain of f(x)=log_([x])[x]+log_({x}){x} (where I.] denotes greatest integer function and ( denotes fractional function) is

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Find the domain and range of f(x)=log[cos|x|+(1)/(2)], where [.] denotes the greatest integer function.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.