Home
Class 12
MATHS
[" 28.If "a(n)" and "b(n)" are positive ...

[" 28.If "a_(n)" and "b_(n)" are positive integers and "a_(n)+sqrt(2)b_(n)=(2+sqrt(2))^(n)" ,then "lim_(n rarr oo)((a_(n))/(b_(n)))=],[" 1) "2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(n) and b_(n) are positive integers and a_(n)+sqrt(2b_(n))=(2+sqrt(2))^(n), then lim_(x rarr oo)((a_(n))/(b_(n)))= a.2 b.sqrt(2)c.e^(sqrt(2))d.e^(2)

If a_n and b_n are positive integers and a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(n->oo)((a_n)/(b_n))= a. 2 b. sqrt(2) c. e^(sqrt(2)) d. e^2

Let a_(1),a_(2),...,a_(n) .be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 Prove that lim_(n rarr oo)((a_(n))/(2^(n-1)))=(2)/(pi)

Define a sequence (a_(n)) by a_(1)=5,a_(n)=a_(1)a_(2)…a_(n-1)+4 for ngt1 . Then lim_(nrarroo) (sqrt(a_(n)))/(a_(n-1))

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

If [x] denotes the integral part of x and a_(n)=sum_(r=0)^(n-1)[x+(r)/(n)] then find Lt_(n)rarr oo(a_(1)+a_(2)+...a_(n))/(n^(2))