Home
Class 12
MATHS
IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q...

`IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s` a. `1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C` b.`1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C` c.`1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C` d.`1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

IfI=int(dx)/(x^(3)sqrt(x^(2)-1)), then Iequals a.(1)/(2)((sqrt(x^(2)-1))/(x^(3))+tan^(-1)sqrt(x^(2)-1))+C b.(1)/(2)((sqrt(x^(2)-1))/(x^(2))+x tan^(-1)sqrt(x^(2)-1))+Cc(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+Cd(1)/(2)((sqrt(x^(2)-1))/(x^(2))+tan^(-1)sqrt(x^(2)-1))+C

int(dx)/(e^xsqrt(2e^x-1))= 2sec^(-1)sqrt(2e^x)+c -2tan^(-1)1/(sqrt(2e-1))+c 2sec^(-1)(sqrt(2)e^x)+c (d) (2sqrt(2e^x-1))/2e^x 2tan^(-1)sqrt(2e^x-1)+c

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3sqrt(1+x^2)(x^2-1)+C 1/3(1+x^2)^(3/2)+C (d) 1/3sqrt(1+x^2)(x^2-2)+C

int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3sqrt(1+x^2)(x^2-1)+C 1/3(1+x^2)^(3/2)+C (d) 1/3sqrt(1+x^2)(x^2-2)+C