Home
Class 12
MATHS
The range of the function f(x)=sin(pi[x^...

The range of the function `f(x)=sin(pi[x^2+1])/(x^4+1),` where [.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi[x]))/(x^(2)+1) (Where [ ] denotes greatest integer function) is (A) {0} (B) (-oo,oo) (C) (0,1) (D) R-{0}

The range of the function f(x)=sin^-1(log [x])+log(sin^-1[x]), (where [,] denotes the greatest integer function) is

The range of the function f(x)=cos[x],-(pi)/(4)

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then