Home
Class 11
MATHS
If sin^4 A + sin^2 A=1 then prove that 1...

If `sin^4 A + sin^2 A=1` then prove that `1/(tan^4A)+1/(tan^2A)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^4 A + sin^2 A=1 , prove that: tan^4 A - tan^2 A =1

If sin^(4)A+sin^(2)A=1, prove that: tan^(4)A-tan^(2)A=1

If cos A+cos B=1/2 and sin A +sin B=1/4 then prove that tan ((A+B)/2)=1/2 .

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

Prove that: sec^4A(1-sin^4A) -2 tan^2A=1 .

prove that sec^4 A(1-sin^4 A) - 2tan^2 A = 1.

if cos A=(4)/(5) then prove that (tan A)/(1+tan^(2)A)=(sin A)/(sec A)

If sin^2A + sin^4A = 1 , what is the value of tan^2A-tan^4A ?

Prove: sin^2A+1/(1+tan^2A)=1

If sin^4theta+sin^2 theta=1 show that, tan^4theta-tan^2theta=1 .