Home
Class 12
MATHS
int0^102 [Tan^-1 x]dx= (where [x] is the...

`int_0^102 [Tan^-1 x]dx`= (where [x] is the largest integer not exceeding x) (A) `102-tan1` (B) 0 (C) 102 (D) `102-pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(4)^(10)([x-4]+[10-x])dx= (where [x] is the largest integer not exceeding x)

Evaluate: int_(0)^(10 pi)[tan^(-1)x]dx, where [x] represents greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

Find the unit digit in (1234)^(102) + (1234)^(103) (A) 2 (B) 4 (C ) 0 (D) 1

If x^2+1/(x^2)=102 , then x-1/x=? (a)8 (b) 10 (c) 12 (d) 13

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi