Home
Class 12
MATHS
Let f(x) = [sinx + cosx], [.] = greatest...

Let `f(x) = [sinx + cosx], [.] =` greatest integer function, `AA x in [0,2pi] g(x)=1/(log|x|) and h(x)=1/(|x|-2)` If `a,b and c` are the number of points of discontinulties of `f(x),g(x) and h(x)` respectively then the value of `a+b+c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = ||x| -1| , g(x) = |x| + |x-2| , h (x) = max { 1,x,x^(3)} If a, b,c are the no .of points where f(x), g(x) and h(x) , are not differentiable then the value of a+ b + c is …..

Let f(x) = ||x| -1| , g(x) = |x| + |x-2| , h (x) = max, { 1,x,x^(3)} If a, b,c are the no .of points where f(x), g(x) and h(x) , are not differentiable then the value of a+ b + c is …..\

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let f(x) = sinx + cosx, g(x) =x^(2)-1 . Then g(f(x)) is invertible for x in

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :

Let f(x)=(2x+7)/(9) and g(x)=(9x+5)/(7) and we define h(x)=f^(-1)(x)+g^(-1)(x)-5x . If (h^(-1)(x)=(ax+b)/(c)) where c is a prime then the value of 5a-2c-b is equal to

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].