Home
Class 12
MATHS
Let an=sum(r=0)^(n-1)[x+r/n], n in N wh...

Let `a_n=sum_(r=0)^(n-1)[x+r/n], n in N` where [*] =greatest integer function and `b_n=(sum_(r=1)^n a_r)/n^2. if lim_(n->oo) b_n=f(x),` then the value of `lim_(x->1)f(x)`is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(n->oo) [sum_(r=1)^n(1/2) ^r] , where [.] denotes the greatest integer function.

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

If sum_(r=1)^(n) a_(r) = (n (n+1)(n+2) )/( 6) AA n ge 1 , then Lt_(n to oo) sum_(r=1)^(n) (1)/( a_r)=

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals