Home
Class 14
MATHS
sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((p...

sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2))=(sin theta)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2))

Prove that sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) - (theta)/(2)) = sin ""(pi)/(4) sin theta.

If : sin^(2) ((pi)/(4) + (theta)/(2)) - cos^(2) ((pi)/(4) + (theta)/(2))= A) sin theta B) cos theta C) sin 2 theta D) cos 2 theta

The value of (sin theta)/(sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2)))

The value of (sin theta)/(sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2)))

Prove that, sin^(2) (pi/8 + theta/2) - sin^(2)(pi/8 - theta/2) = 1/sqrt2 sin theta

2cos((pi)/(2)-theta)+3sin((pi)/(2)+theta)-(3sin theta+2cos theta)=

Prove that cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin 2theta

Find the value of the expression 3{sin^(4)((3 pi)/(2)-theta)+sin^(4)(3 pi+theta)}-2{sin^(6)((pi)/(2)+theta)+sin^(6)(5 pi-theta)}

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta