Home
Class 12
MATHS
tan(tan^-1x+tan^-1y+tan^-1z)-cot(cot^-1x...

`tan(tan^-1x+tan^-1y+tan^-1z)-cot(cot^-1x+cot^-1y+cot^-1z)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : tan(tan^-1 x+tan^-1 y+tan^-1 z)=cot(cot^-1 x+cot^-1 y+cot^-1 z)

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to

If tan^(-1)x + tan^(-1)y=4pi//5 , then cot^(-1)x + cot^(-1)y is equal to

Prove the "tan"("tan"^(-1)x +"tan"^(-1) y + "tan"^(-1)z)="cot"("cot"^-1x +"cot"^(-1) y+"cot"^(-1) z)

The value of cot (tan^-1 x + cot^-1 x) is equal to :

cot(tan^(-1)x+cot^(-1)x)