Home
Class 12
MATHS
The value of the determinant |a^2a1cosn ...

The value of the determinant `|a^2a1cosn xcos(n+1)xcos(n+2)xsinn xsin(n+1)xsin(n+2)x|` is independent of n (b) a (c) x (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |a^2a1cosn xcos(n+a)xcos(n+2)xsinn xsin(n+1)xsin(n+2)x| is independent of n (b) a (c) x (d) none of these

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot