Home
Class 12
MATHS
Prove that : tan^(-1)\ (1+x)/(1-x)=pi/4 ...

Prove that `: tan^(-1)\ (1+x)/(1-x)=pi/4 + tan^(-1)x, x<1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that i) tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1 ii) tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that tan^(-1) ((1-sqrt(x))/(1+sqrt(x))) = pi/4 - tan^(-1) sqrt(x) , "where" x gt 0

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))