Home
Class 12
MATHS
If log(12)18=x and log(24)4=y then find ...

If `log_(12)18=x` and `log_(24)4=y` then find the value of `xy-(2x+5y)+4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(12)6=x,log_(24)54=y, then find the value of xy+(5x-2y)+4

If a=log_(12)18 and b=log_(24)54 then find the value of ab+5(a-b)

If log_(y)x=8" and "log_(10y)16x=4 , then find the value of y.

If a=log_(12)18,b=log_(24)54, then find the value of ab+5(a-b)

If log_12 18=x, log_24 4=y then the value of xy-(2x+5y)+4 is

If log_(12)18 = x and log_(24)54 = y , then show that xy + 5(x-y) = 1

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x