Home
Class 12
MATHS
The value of x satisfying |x-1|^(log3x^2...

The value of x satisfying `|x-1|^(log_3x^2-2log_x9)=(x-1)^7` is

A

`1/sqrt3`

B

1

C

2

D

81

Text Solution

Verified by Experts

`|x-1|^(log_(3)x^(2)-2log_(x)9*)= (x-1)^(7)`
Since L.H.S. ` gt 0." So, "x gt 1`
` :. (x-1)^(log_(3)x^(2)-2 log_(x)9)=(x-1)^(7)`
`rArr x - 1 = 1 or log_(3)x^(2) - 2log_(x)9=7`
` rArr x = 2 or 2 log_(3) x - 4 1/(log_(3)x) - 7 = 0`
` rArr x = 2 or 2(log_(3)x)^(2) - 7 log_(3)x-4 = 0`
` rArr x = 2 or log _(3) x =- 1//2, 4`
` rArr x = 2 or x = 3^(-1//2) , 3^(4)`
` rArr x = 2, 81`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying abs(x-1)^(log_3 x^2-2log_x 9)=(x-1)^7 is

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

The value(s) of x, satisfying 3^(4log_9(x+1))=2^(2log_2 x)+3

4.The value of x, satisfying 3^(4log_(9)(x+1))=2^(2log_(2)x)+3

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)