Home
Class 10
MATHS
(x+a)/(b+c) + (x+b)/(a+c) + (x+c)/(a+b) ...

`(x+a)/(b+c) + (x+b)/(a+c) + (x+c)/(a+b) + 3 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+a)/(b+c)+(x+b)/(c+a)+(x+c)/(a+b)+3=0a>0,b>0,c>0 then the value of x is

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

L_1=(a-b)x+(b-c)y+(c-a)=0L_2=(b-c)x+(c-a)y+(a-b)=0L_3=(c-a)x+(a-b)y+(b-c)=0 KAMPLE 6 Show that the following lines are concurrent L1 = (a-b) x + (b-c)y + (c-a) = 0 12 = (b-c)x + (c-a) y + (a-b) = 0 L3 = (c-a)x + (a-b) y + (b-c) = 0. ,

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1