Home
Class 12
MATHS
If y=[x+sqrt(x^2+a^2)]^n then prove that...

If `y=[x+sqrt(x^2+a^2)]^n` then prove that `(dy)/dx=(ny)/sqrt(x^2+a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt(x^2+a^2)) .

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt((x^2+a^2)

If y = {x+sqrt (x^2 + a^2})^n , prove that dy/dx= (ny)/sqrt (x^2+a^2) .

If y= {x + sqrt(x^(2) + a^(2))}^(n) prove that (dy)/(dx)= (ny)/(sqrt(x^(2) + a^(2))). n gt 1 ne N

Ify={x+sqrt(x^(2)+a^(2))}^(n), provethat (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))+a

If y=[x+sqrt(x^2+9)]^n , show that dy/dx=(ny)/(sqrt(x^2+9)

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))