Home
Class 12
MATHS
If tan^(- 1)(y/x)-1/2loga(x^2+y^2)=0, th...

If `tan^(- 1)(y/x)-1/2log_a(x^2+y^2)=0,` then `(dy)/(dx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : 2tan^-1(y/x)=log(x^2+y^2)

If tan^(-1) (y/x) = log sqrt(x^(2) + y^(2)) , prove that dy/dx = (x+y)/(x-y)

If tan^(-1) (y/x) = log sqrt(x^(2) + y^(2)) , prove that dy/dx = (x+y)/(x-y)

If tan^(-1)(Y/X) = log (sqrt(X^2+Y^2)) , prove that (dy/dx) = ((X+Y)/(X-Y))

If tan^(-1)(Y/X) = log (sqrt(X^2+Y^2)) , prove that (dy/dx) = ((X+Y)/(X-Y))

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

if y=tan^(-1)((2^(x))/(1+2^(2x+1))) then (dy)/(dx)atx=0 is

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))