Home
Class 10
MATHS
" 7.If "x=y log(xy)," show that "(dy)/(d...

" 7.If "x=y log(xy)," show that "(dy)/(dx)=(y(x-y))/(x(x+y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

if e^(x+y)=xy, show that (dy)/(dx)=(y(1-x))/(x(y-1))

If log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If y=log(1/x) , show that dy/dx+e^y=0

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))