Home
Class 11
MATHS
Q.11(a^(log(0)x))^(2)-5a^(log(b)x)+6=0...

Q.11(a^(log_(0)x))^(2)-5a^(log_(b)x)+6=0

Promotional Banner

Similar Questions

Explore conceptually related problems

(a^(log_(b)x))^(2)-5x^(log_(b)a)+6=0

(a^(log_b x))^2-5x^(log_b a)+6=0

If (a^(log_b x))^2-5 a^(log_b x)+6=0, where a >0, b >0 & a b!=1, then the value of x can be equal to (a) 2^(log_b a) (b) 3^(log_a b) (c) b^(log_a2) (d) a^(log_b3)

If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

If x, where 0,1,2 are respectively the values of x satisfying the equation ((log_(5)x))^(2)+(log_(5x)((5)/(x))), then

The value of x for which the equation 5*3^(log_(3)x)-2^(1-log_(2)x)-3=0

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Solve the equation log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0