Home
Class 11
MATHS
(x+1)/(x+2)geq1...

`(x+1)/(x+2)geq1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (-1)/(|x|-2)geq1,w h e r ex in R ,x!=+-2.

Solve: (-1)/(|x|-2)geq1,w h e r ex in R ,x!=+-2.

Solve: (-1)/(|x|-2)geq1,w h e r ex in R ,x!=+-2.

Solve: (|x|-1)/(|x|-2)geq0,x in R ,x!=+-2.

The set of all values of ' x ' which satisfies the inequation |1-(|x|)/(1+|x|)|geq1/2 is: [-1,1] (b) (-oo,-1) (1,oo) (d) (0,1)

log_(1/4)((35-x^2)/x)geq-1/2

Let f:(a , b)->R is a differentiable function such that (lim)_(x->a^+)f^2(x)=0,("lim")_(x->b^-)f^2(x)=e-1 and 2f(x)f^(prime)(x)-f^2(x)geq1 for all x in (a , b) then value of (b-a) can be (a) 0 (b) 1/2 (c) 1 (d) 2

If f is a real function such that f(x) > 0,f^(prime)(x) is continuous for all real x and a xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2), show that sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1 .

If f is a real function such that f(x) > 0,f^(prime)(x) is continuous for all real x and a xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2), show that sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1 .

If f is a real function such that f(x)>0,f^(prime)(xx) is continuous for all real xa n da xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2), show that sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1.