Home
Class 7
MATHS
[" 7.Solution of equation "cot^(-1)x+sin...

[" 7.Solution of equation "cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(4)" is "],[[" (a) "x=3," (b) "x'=1/sqrt(5)],[" (c) "x=0," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

Prove: sin^(-1)((1)/(sqrt(5)))+cot^(-1)3=(pi)/(4)

sin ^(-1) "" (1)/(sqrt(5))+cot ^(-1) 3= (pi)/(4)

Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=0 is