Home
Class 12
MATHS
int(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)...

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

Show that int_(0)^(log 5) (sqrt(e^(x)-1))/(e^(x)+3)e^(x)dx = 4 - pi

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

Evaluate : int_0^log5(e^x(e^x-1)^(1/2))/(e^x+3)dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=