Home
Class 12
MATHS
lim(alpha->pi/4)(sinalpha-cosalpha)/(alp...

`lim_(alpha->pi/4)(sinalpha-cosalpha)/(alpha-pi/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(alphato pi/4)(sinalpha-cosalpha)/(alpha-pi/4) is

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha(b)y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha(c)y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha(d)y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

The value of lim_(xto4)((cos alpha)^(x)-(sinalpha)^(x)-cos 2alpha)/(x-4), alpha epsilon(0,(pi)/2) is

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?