Home
Class 14
MATHS
f=sqrt((x)/(a))+sqrt((a)/(x))," prove th...

f=sqrt((x)/(a))+sqrt((a)/(x))," prove that "2xy(dy)/(dx)=((x)/(a)-(a)/(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt((x)/(a))+sqrt((a)/(x)), prove that 2xy(dy)/(dx)=((x)/(a)-(a)/(x))

y=sqrt((x)/(a))+sqrt((a)/(x)), provethat2xy (dy)/(dx)=((x)/(a)-(a)/(x))

y=sqrt((x)/(a))-sqrt((a)/(x)) Prove that 2xy((dy)/(dx))=(x)/(a)-(a)/(x)

If y=sqrt((x)/(a))+sqrt((a)/(x))," then: "2xy(dy)/(dx)=

If y = sqrt(x/(a))-sqrt(a/(x)) show that 2xy (dy)/(dx)=(x)/(a)-(a)/(x)

If y=sqrt(x/a)+sqrt(a/x) , prove that 2x y(dy)/(dx)=(x/a-a/x)

If y = sqrt(x/(m))+sqrt(m/(x)) show that 2xy (dy)/(dx) = (x)/(m) - (m)/(x) *

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))