Home
Class 12
MATHS
Simplify : cos theta[(cos theta,sin thet...

Simplify : `cos theta[(cos theta,sin theta),(-sin theta,cos theta)]=sin theta[(sin theta,-cos theta),(cos theta,sin theta)]`

Text Solution

Verified by Experts

The correct Answer is:
`[(1,0),(0,1)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    SUBHASH PUBLICATION|Exercise FIVE MARKS QUESTIONS WITH ANSWERS|8 Videos
  • MATRICES

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • MATRICES

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|10 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos
  • MOCK QUESTION PAPER - 1

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos

Similar Questions

Explore conceptually related problems

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

((cos theta+i sin theta)/(sin theta+i cos theta))^(4)=

(sin theta+i cos theta)^(9) =

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

(sin theta)/(cosec theta)+(cos theta)/(sec theta)=1

(sin theta+cos theta)(tan theta+cot theta)=

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

Simplify: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) + sin theta cos theta

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta