Home
Class 11
MATHS
Prove that : tan 3x=(3tanx-tan^(3)x)/(1-...

Prove that : `tan 3x=(3tanx-tan^(3)x)/(1-3tan^(2)x)`

Text Solution

Verified by Experts

The correct Answer is:
`=(3 tanx-tan^(3)x)/(1-3tan^(2)x)`

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

Prove that tan 3x= (3tan x-tan^3 x)/(1-3tan^2 x)

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Prove that tan(x+y)=(tanx+tany)/(1-tanxtany)

Prove that sin 2x=(2 tan x)/(1+tan^(2)x)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1