Home
Class 11
MATHS
If A+B+C=pi, Prove that tanA+tanB+tanC...

If `A+B+C=pi`, Prove that
`tanA+tanB+tanC=tanA.tanB.tanC`

Text Solution

Verified by Experts

The correct Answer is:
`=tanA.tanB.tanC`

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

If x=180^(@) ,A = (pi)/(3) and B=(pi)/(6) Prove that tan(A-B)= (tanA-tanB)/(1+tanAtanB)

If A+B+C=pi prove that "tan"A/2"tan"B/2+"tan"B/2"tan"C/2+"tan"C/2"tan"A/2=1

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.

In a triangle, tanA + tanB + tanC = 6 and tanA tanB = 2 , then the values of tanA, tanB, tanC are :

If tanA=1/2,tanB=1/3, Prove that A+B=(pi)/4

If tanA=1/2,tanB=1/3, Prove that A+B=(pi)/4

If Agt=0,B=0,A + B = pi/3 and y = tanA.tanB , then :

If A+B+C=pi , then cos B+cos C=