Home
Class 11
MATHS
If A+B+C=pi, prove that : sin2A+sin2B+si...

If `A+B+C=pi`, prove that : `sin2A+sin2B+sin2C=4sinA sinB sinC`

Text Solution

Verified by Experts

The correct Answer is:
RHS

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.

If B= 15^(@) ,then prove that 4 sin 2B.cos 4B.sin6B=1.

If in a DeltaABC , sin^(3)A+sin^(3)B+sin^(3)C=3sinAsinBsinC , then |{:(a,b,c),(b,c,a),(c,a,b):}| equals

sin(A-B)=sinA cos B-cosA sinB

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

Prove that cos (pi/2 + x) = - sin x .

If sinA=1/2 find sin2A & cos2A

With the usual notation in the triangle A B C [[ 1 , 1 , 1 ],[ sin A , sin B , sin C ],[ sin ^2 A , sin ^2 B , sin ^3 C ]] =

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?

if A, B, C are acute positive angles, then : ((sinA + sinB)(sinA + sinC)(sinA + sinC))/(sinA sinB sinC) is :