Home
Class 11
MATHS
Prove that: sinA+sinB+sinC=4cos(A/2)cos(...

Prove that: `sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)` if A + B +C =`180 ^@`

Text Solution

Verified by Experts

The correct Answer is:
RHS

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos^(2)A+cos^(2)B-cos^(2)C=1-2sinA sinB cosC

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

If sinA=1/2 find sin2A & cos2A

cos(A-B)=cosAcosB+sinA sinB

sin(A-B)=sinA cos B-cosA sinB

(sin3A)/(sinA)-(cos3A)/(cosA)=2

(sinA-sinB)/(sinA+sinB)=tan((A-B)/2).cot((A+B)/2)