Home
Class 11
MATHS
cos^(2)A+cos^(2)B-cos^(2)C=1-2sinA sinB ...

`cos^(2)A+cos^(2)B-cos^(2)C=1-2sinA sinB cosC`

Text Solution

Verified by Experts

The correct Answer is:
RHS

NA
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SUBHASH PUBLICATION|Exercise Alternate Methods|12 Videos
  • SUPER MODEL QUESTION PAPER-3

    SUBHASH PUBLICATION|Exercise Point E|4 Videos

Similar Questions

Explore conceptually related problems

cos^(4)A-sin^(4)A=2cos^(2)A-1

cos^(4)A-sin^(4)A=2cos^(2)A-1

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos(A-B)=cosAcosB+sinA sinB

Show that cos 2A=cos^(2)A-sin^(2)A

cos^(-1)("cos"(2pi)/3)

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

Prove that: (sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = (2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2 cos^(2)A) .