Home
Class 12
MATHS
f(x)=1/sqrt(|[|x|-1]|-5)...

`f(x)=1/sqrt(|[|x|-1]|-5)`

Text Solution

Verified by Experts

`[|x|-1]-5>0`
`[|x|-1]>5`
`[|x|-1]<-5`
`[|x|-1]>5`
`|x|-1>=6`
`|x|>=7`
`x>=7`
`x in (-oo,-7] uu[7,oo)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(sqrt(|||x|-1]|-5)),[.] is the greatest integer functio.

Find the domain of f(x)=(1)/(sqrt(|||x|-1||-5))

Find the domain of definition of the following functions : (i) f(x) = log_(10) sin (x-3) + sqrt(16 - x^(2)) (ii) f(x) = sqrt((4- |x|)/(7-|x|)) (iii) f(x) = (1)/(sqrt([|x|-1]|-5)) where [x] denotes the greatest integer function.

Find the domain of the function f(x)=1/sqrt(x-5)

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

Find the domain of the following functions: f(x)=(1)/(sqrt(x-5))+(x-1)/(x^(2)-4)

Find the domain of each of the following functions given by f(x)=(1)/(sqrt(x-|x|)) (ii) f(x)=(1)/(sqrt(x+|x|)) (iii) f(x)=(1)/(sqrt(x-[x]))( iv )f(x)=(1)/(sqrt(x+[x]))