Home
Class 12
MATHS
The function f(x)=sin(loge |x|), x!=0 an...

The function `f(x)=sin(log_e |x|), x!=0` and `1` if `x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Ax=0 the given function f(x)={x sin(log x^(2));x!=0 and 0;x=0 is

The function f(x) = [{:(sin(ln |x|), x ne 0),(1, x=0):}

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

The functions f(x) = int _0^(1) log_e ((1-x)/(1+x)) dx is

The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x), x != 0 , is continuous at x = 0 is

The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x), x != 0 , is continuous at x = 0 is

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|x|-2)) , is