Home
Class 12
MATHS
" If "|z-(2)/(z)|=1," then "|z|in...

" If "|z-(2)/(z)|=1," then "|z|in

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-(2)/(z)|=1 then |z| lies in

If |z_(1) | = |z_(2)| = 1 , then |z_(1) + z_(2)| =

If |z_1|=|z_2|=1 , then |z_1+z_2| =

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is

If z_1, z_2 are two complex numbers satisfying the equation |(z_1 +z_2)/(z_1 -z_2)|=1 , then z_1/z_2 is a number which is :

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to

Statement I: If |z_1+z_2|=|z_1|+|z_2|, then Im(z_1/z_2)=0 (z_1,z_2 !=0) Statement II: If |z_1+z_2|=|z_1|+|z_2| then origin, z_1, z_2 are collinear with 'z_1' and z_2 lies on the same side of the origin (z_1,z_2 !=0)

If |z_(1)+z_(2)|=|z_1|+|z_2| then