Home
Class 12
MATHS
f(x)={[(srt(1+px)-sqrt(1-px))/x,-1<=x<0]...

`f(x)={[(srt(1+px)-sqrt(1-px))/x,-1<=x<0],[(2x+1)/(x-2),0<=x<=1]}`is continuous in the interval `[-1, 1]`, then 'p' is equal to:,0

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):} is continuous in [-1,1] then p is equal to

If f(x)=(sqrt((1+px))-sqrt((1-px)))/x , -1lex =(2x+1)/(x-2) , 0lexle1 is continuous in the interval [-1,1] . Find P.

If f(x)=(sqrt((1+px))-sqrt((1-px)))/x , -1lex =(2x+1)/(x-2) , 0lexle1 is continuous in the interval [-1,1] . Find lim_(xrarr0)f(x)

f(x) = (sqrt(1+px) - sqrt(1 - px))/(x), -1 le x le 0 = (2x + 1)/(x-2), 0 le x le 1 is continuous in the interval [-1, 1], then p is :

If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(= 3x^(2) + 2x - 2 ", if " 0 le x lt 1 ):} is continuous on its domain , then : p =