Home
Class 12
MATHS
int(0)^( pi)(x tan x)/(sec x+cos x)dxis(...

int_(0)^( pi)(x tan x)/(sec x+cos x)dxis(pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2)(d)(pi^(2))/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(x tan x)/(sec x+cos x)dx is (pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2) (d) (pi^(2))/(3)

int_(0)^( pi)x(tan x)/(sec x+cos x)dx=(pi^(2))/(4)

int_(0)^( pi)(x tan x)/(tan x+sec x)*dx=(pi(pi-2))/(2)

int_(0)^( pi)(x sec x tan x)/(1+sec^(2)x)dx=(pi^(2))/(4)

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_ (0) ^ (pi) (x tan x) / (sec x cos ecx) = (pi ^ (2)) / (4)

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

lim_(x rarr(pi)/(2))((1-sin x)(8x^(3)-pi^(3))cos x)/((pi-2x)^(4))-(pi^(2))/(6) b.(3 pi^(2))/(16) c.(pi^(2))/(16)d .-(3 pi^(2))/(16)

int_ (0) ^ ((pi) / (2)) tan ^ (- 1) ((1 + sin x) / (cos x)) dx is (A) pi (B) (3 pi ^ (2)) / (16) (C) (pi ^ (2)) / (8) (D) (pi) / (8)