Home
Class 12
MATHS
" Let "g(x)=xf(x)," where "f(x)={[x sin(...

" Let "g(x)=xf(x)," where "f(x)={[x sin(1)/(x),,x!=0],[0,,x=0]." At "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=xf(x), where f(x)={x sin((1)/(x));x!=00;x=0} then at x=0

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let f(x) = {(x "sin "(1)/(x)","," if " x != 0),(" 0,"," where " x = 0):} Then, which of the following is the true statement ?

Let f,g:R rarr R be two function diffinite f(x)={x sin((1)/(x)),x!=0; and 0,x=0 and g(x)=xf(x)

Let g(x)=f(f(x)) where f(x)={1+x;0<=x<=2} and f(x)={3-x;2

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).