Home
Class 12
MATHS
tan[2cot^(-1)((1)/(3))-(pi)/(4)]=...

tan[2cot^(-1)((1)/(3))-(pi)/(4)]=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

solve the equation cot^(-1)x+tan^(-1)3=(pi)/(2)

sum_(r=1)^(oo)cot^(-1)(r^(2)+(3)/(4))=(A)(pi)/(2)(B)cot^(-1)(2) (C) (pi)/(6)(D)tan^(-1)(2)

Prove that "Tan"^(-1)2+Tan^(-1)3=Cot^(-1)(1/2)+Cot^(-1)(1/3)=(3pi)/4

tan^(-1)3+"cot"^(-1)3=(pi)/2

Fill in the blanks choosing correct answer from the brackets. The value of "cot"^(-1)2+"tan"^(-1)1/(3)= …. . (pi/(4),1,pi/(2))

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-(pi)/(2))cot^(-1)x-3tan^(-1)x-3(2-(pi)/(2))>0 is (a,b), then the value of cot ^(-1)a+cot^(-1)b is

prove that :tan^(-1)(((1)/(2))tan2A)+tan^(-1)(cot A)+tan^(-1)(cot^(3)A)={0when(pi)/(4)

If 0leAle(pi)/(4)," then " tan^(-1)((1)/(2)tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A) is equal to

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=