Home
Class 12
MATHS
" The value of "lim(x rarr=)((x^(2)sin((...

" The value of "lim_(x rarr=)((x^(2)sin((1)/(x))-x)/(1-|x|))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

value of lim_(x rarr0)x^(2)sin((1)/(x))=0

The value of lim_(x rarr oo) {(x^(2)sin ((1)/(x))-x)/(1-|x|)} is :

lim_(x rarr0)(x^(2)sin(1/x))/(sin x)

The value of lim_(x rarr-oo)(x^(4)sin((1)/(x))+x^(2))/(1+|x^(3)|)

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr a)((sin x)/(sin a))^((1)/(x-a))=