Home
Class 13
MATHS
" 40.The integral "int(1+x-(1)/(x))e^(x+...

" 40.The integral "int(1+x-(1)/(x))e^(x+(1)/(x))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(1+x-(1)/(x))e^(x+(1)/(x)) is equal to-

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to (1)(x-1)e^(x+(1)/(x))+C(2)xe^(x+(1)/(x))+C(3)(x+1)e^(x+(1)/(x))+C(2)-xe^(x+(1)/(x))+C

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

int1/(1+e^x)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

The integral int(1+x-1/x)e^(x+1/x)dx is equal to (1) (x-1)e^(x+1/x)+C (2) x e^(x+1/x)+C (3) (x+1)e^(x+1/x)+C (4) -x e^(x+1/x)+C

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to