Home
Class 12
MATHS
6x^(-1)sqrt(8)x+0.0^(-1)3sqrt(3)x^(2)=x/...

6x^(-1)sqrt(8)x+0.0^(-1)3sqrt(3)x^(2)=x/1

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan x. tan y=a and x+y=(pi)/(6) then tanx and a satisfy the equation (a) x^(2)-sqrt(3)(1-a)x+a=0 (b) sqrt(3)x^(2)-(1-a)x+a sqrt(3)=0(c)x^(2)+sqrt(3)(1+a)x-a=0(d)sqrt(3)x^(2)+(1+a)x-a sqrt(3)=0

Find the discriminant of each of the following equations: (i) 2x^(2)-7x+6=0" "(ii)" "3x^(2)-2x+8=0 (iii) 2x^(2)-5sqrt(2)x+4=0" "(iv)" "sqrt(3)x^(2)+2sqrt(2)x-2sqrt(3)=0 (v) (x-1)(2x-1)=0" "(vi)" "1-x=2x^(2)

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(x^(2)+2x+8))" is"

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

The domain of the function : f(x)=(sqrt(-log_(0.3)(x-1)))/(sqrt(-x^(2)+2x+8)) is :

The velue of lim_(x rarr0)(sin(3sqrt(x))ln(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5(3sqrt(x)))-1)) is equal to

lim_(x rarr0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)