Home
Class 9
MATHS
Given that sinalpha=1/sqrt2andtanbeta=sq...

Given that `sinalpha=1/sqrt2andtanbeta=sqrt3`. Find the value of `alpha+beta`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise UNIT TEST|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS AND ANSWERS (EXERCISE 6.2)|2 Videos
  • STATISTICS

    SURA PUBLICATION|Exercise Section -C|2 Videos

Similar Questions

Explore conceptually related problems

If tan(theta/2)=2-sqrt3 ,find the value of sintheta .

If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in

If alpha+ beta=-7 and alpha beta=10 then find the value of alpha-beta=__ .

If sin^4alpha+cos^4beta+2=4sinalphacosbeta,0lt=alpha,betalt=pi/2 then find the value of (sinalpha+cosbeta)dot

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

Let alpha, beta" such that "pi lt alpha-beta lt 3pi." If sin "alpha+sin beta=-21//65 cos alpha+cos beta=-27//65 , then find the value of cos ""(alpha-beta)/(2) .

If g={(1, 1), (2, 3), (3, 5), (4, 7)} is a function given by g(x)=alphax+beta then the values of alpha and beta are

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .