Given that `sinalpha=1/sqrt2andtanbeta=sqrt3`. Find the value of `alpha+beta`.
Topper's Solved these Questions
TRIGONOMETRY
SURA PUBLICATION|Exercise UNIT TEST|16 Videos
TRIGONOMETRY
SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS AND ANSWERS (EXERCISE 6.2)|2 Videos
STATISTICS
SURA PUBLICATION|Exercise Section -C|2 Videos
Similar Questions
Explore conceptually related problems
If tan(theta/2)=2-sqrt3 ,find the value of sintheta .
If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in
If alpha+ beta=-7 and alpha beta=10 then find the value of alpha-beta=__ .
If sin^4alpha+cos^4beta+2=4sinalphacosbeta,0lt=alpha,betalt=pi/2 then find the value of (sinalpha+cosbeta)dot
If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4
Let alpha, beta" such that "pi lt alpha-beta lt 3pi." If sin "alpha+sin beta=-21//65 cos alpha+cos beta=-27//65 , then find the value of cos ""(alpha-beta)/(2) .
If g={(1, 1), (2, 3), (3, 5), (4, 7)} is a function given by g(x)=alphax+beta then the values of alpha and beta are
sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)
If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .
SURA PUBLICATION-TRIGONOMETRY-ADDITIONAL QUESTIONS AND ANSWERS (EXERCISE 6.3)