Home
Class 10
MATHS
Prove that following identities (sin^(...

Prove that following identities
`(sin^(3)A+cos^(3))/(sinA+cosA)+(sin^(3)A-cos^(3)A)/(sinA-cosA)=2`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXECRISE 5.2|9 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXECRISE 5.3|6 Videos
  • SURAS MODEL QUESTION PAPER-2019

    SURA PUBLICATION|Exercise Part-IV|3 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities : 1 - (sin^(2) A)/ (1 + cos A) = cos A

Prove that following identities (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

Prove that sin 4A=4 sin A cos^(3) A-4 cos A sin^(3) A

The value of 2 sin A cos^(3)A-2 cos A sin^(3)A is …………

(sin ^2 3A )/( sin ^2 A ) -( cos^2 3A )/(cos ^2 A ) is

Prove that: (sin5A-sin3A)/(cos5A+cos3A)=tanA (sinA+sin3A)/(cosA+cos3A)=tan2A

Prove that cos A cos 2A cos 2^(2) A cos 2^(3)A....cos 2^(n-1) A=(sin 2^(n) A)/(2^(n) sin A)

prove that [2(sin^3 x - cos^3 x )/(sinx -cosx)]-sin2x=2