Home
Class 12
MATHS
If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "sh...

If `A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-3I)`

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 1.2|11 Videos
  • APPLICATION OF MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 1.3|8 Videos
  • APPLICATION OF INTEGRATION

    SURA PUBLICATION|Exercise 5 MARKS|7 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A [{:(1,2,2),(2,1,2),(2,2,1):}] , show that A^2 -4A -5I =0

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=0 and hence find A^(-1) .

A= [(0,-2,1),(2,0,-4),(-1,0,0)] then A is

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A= [(2,3,1),(1,0,2),(2,1,0)] compute A^(2) .

If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I_(2)=0

If A = [{:(5,3),(-1,-2):}], "show that" " "A^(2)-3A-7I_(2)=0_(2). Hence find A^(-1) .

If A=[(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3)-6A^(2)+7A+2I=0

Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)_=(adjA)A=|A|I_(3) .