Home
Class 12
MATHS
The equation sqrt(x+1) - sqrt(x-1) = sqr...

The equation `sqrt(x+1) - sqrt(x-1) = sqrt(4x-1)` has

A

no solution

B

one solution

C

two solution

D

more than one solution

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS( Fill in the blanks : )|5 Videos
  • THEORY OF EQUATIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS( CHOOSE THE INCORRECT STATEMENT : )|5 Videos
  • THEORY OF EQUATIONS

    SURA PUBLICATION|Exercise EXERCISE 3.7|10 Videos
  • PROBABILITY DISTRIBUTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS - 5 MARKS|4 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY - II

    SURA PUBLICATION|Exercise ( 5 marks )|5 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

(1)/(sqrt(x+3)-sqrt(x-4))

The equation sqrt(1+log_(x) sqrt27) log_(3) x+1 = 0 has

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

intsqrt(e^x-1)dxi se q u a lto 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c

Number of real solutions of sqrt(x)+sqrt(x-sqrt(1-x))=1 is

Evaluate int(1)/(sqrt(x+1)+sqrt(x))dx .

Evaluate: intsqrt((1-sqrt(x))/(1+sqrt(x)))dx