Home
Class 12
MATHS
Prove that tan^(-1)sqrt(x)=(1)/(2)cos^(-...

Prove that `tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x""in[0,1]`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS)|10 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos
  • MODAL QUESTION PAPER

    SURA PUBLICATION|Exercise PART - IV|26 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1){(1+x)/2}=(cos^(-1)x)/2

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Integrate the functions (sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]