Home
Class 12
MATHS
Find the real solutions of the eqution t...

Find the real solutions of the eqution `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS)|10 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos
  • MODAL QUESTION PAPER

    SURA PUBLICATION|Exercise PART - IV|26 Videos

Similar Questions

Explore conceptually related problems

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is (a)0 (b) -1 (c) 1 (d) 2

Find the number of solution of the eqution tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)(3x)

(x sin^(-1) x)/(sqrt(1 - x^(2)))

The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2)-4x^(2)) is

The number of solution of the eqution tan^(-1)2x+tan^(-1)3x=(pi)/(4) is

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The solution set of the equation sin^(-1)sqrt(1-x^2)+cos^(-1)x=cot^(-1)(sqrt(1-x^2))/x-sin^(-1)x is (a) [-1,1]-{0} (b) (0,1)uu{-1} (c) [-1,0)uu{1} (d) [-1,1]