Home
Class 12
MATHS
Prove that tan^(-1)((1-x)/(1+x))-tan^(-1...

Prove that `tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 3 MARKS)|10 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos
  • MODAL QUESTION PAPER

    SURA PUBLICATION|Exercise PART - IV|26 Videos

Similar Questions

Explore conceptually related problems

Simplify : tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)).

y=tan^(-1)(x/(1+sqrt(1-x^2)))

Prove that tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x""in[0,1]

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Prove that |tan^(-1)x-tan^(-1)y|lt=|x-y|AAx , y in Rdot

If y=tan^(-1)((1+x)/(1-x)) find y'.