Home
Class 12
MATHS
If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=...

If `vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)," find (i) "(vec(a)xxvec(b))xxvec(c)" (ii) "vec(a)xx(vec(b)xxvec(c))`

Answer

Step by step text solution for If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)," find (i) "(vec(a)xxvec(b))xxvec(c)" (ii) "vec(a)xx(vec(b)xxvec(c)) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.4|11 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.5|7 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.2|10 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k) find vec(a). (vec(a) xx vec(c )) .

If vec(a)=vec(i)+2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+hat(2j)+hat(k)," find "vec(a)*(vec(b)xxvec(c))

Knowledge Check

  • For vec(a)=hat(i)+hat(j)-2hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=hat(i)-2hat(j)+2hat(k) , then find the unit vector parallal to vec(a)+vec(b)+vec(c) is ...................... .

    A
    `(hat(i)+hat(j)-hat(k))/(sqrt(3))`
    B
    `(hat(i)+hat(j)+hat(k))/(sqrt(3))`
    C
    `(hat(i)+hat(j)+hat(k))/(3)`
    D
    `(hat(i)-hat(j)+hat(k))/(sqrt(6))`
  • If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k),vec(c)=3hat(i)+hat(j)" then "vec(a)+tvec(b) will be perpendicular to vec(c) only when t =

    A
    5
    B
    4
    C
    8
    D
    `(7)/(3)`
  • Similar Questions

    Explore conceptually related problems

    vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=-hat(i)+2hat(j)-4hat(k),vec(c)=hat(i)+hat(j)+hat(k)" then find the of "(vec(a)xxvec(b))*(vec(a)xxvec(c)).

    If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=3hat(i)+5hat(j)+2hat(k),vec(c)=-hat(i)-2hat(j)+3hat(k), (vec(a)xxvec(b))xxvec(c)=(vec(a)*vec(c))vec(b)-(vec(b)*vec(c))vec(a)

    If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=3hat(i)+5hat(j)+2hat(k),vec(c)=-hat(i)-2hat(j)+3hat(k), vec(a)(vec(a)xxvec(b))=(vec(a)*vec(c))vec(b)-(vec(a)*vec(b))vec(c)

    If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=2hat(i)-hat(j)+hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)andvec(a)xx(vec(b)xxvec(c))=lvec(a)+mvec(b)+nvec(c) find the values fo l,m,n.

    If vec(a)=hat(i)-hat(j),vec(b)=hat(j)-hat(k),vec(c)=hat(k)-hat(i)" then find "[vec(a)-vec(b),vec(b)-vec(c),vec(c)-vec(a)]

    If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k)andvec(c)=3hat(i)+hat(j)" find "lambda" such that "vec(a)+lambdavec(b) is perpendicular to vec(c).