Home
Class 12
MATHS
Show that the straight lines vec(r)=(5ha...

Show that the straight lines `vec(r)=(5hat(i)+7hat(j)-3hat(k))+s(4hat(i)+4hatj-5hat(k))andvec(r)=(8hat(i)+4hat(j)+5hat(k))+t(7hat(i)+hat(j)+hat(k))` are coplanar. Find the vector equation of the plane in which they lie.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.9|8 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.10 (Choose the Correct or the most suitable answer from the given four alternative : )|25 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise EXERCISE 6.7|7 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

Show that the lines vec(r)=(6hat(i)+hat(j)+2hat(k))+s(hat(i)+2hat(j)-3hat(k)),andvec(r)=(3hat(i)+2hat(j)-2hat(k))+t(2hat(i)+4hat(j)-5hat(k)) are skew lines and hence find the shortest distance between them.

The angle between the lines vec(r)=(hat(i)+2hat(j)-3hat(k))+t(2hat(i)+hat(j)-2hat(k))" and the plane "vec(r)*(hat(i)+hat(j))+4=0 is

Find the angle between the line vec(r)=(2hat(i)-hat(j)+hat(k))+t(6hat(i)+2hat(j)-2hat(k))" and the plane "vec(r)*(6hat(i)+3hat(j)+2hat(k))=8

Show that the vectors are coplanar hat(i)-2hat(j)+3hat(k),-2hat(i)+3hat(j)-4hat(k),-hat(j)+2hat(k)

show that the vectors 3 hat(i)- 2hat(j)+ hat(k), hat(i)-3hat(j)+5hat(k) and 2hat(i)+ hat(j)- 4 hat(k) form a right angled triangle

Show that four points whose position vectors are given 6hat(i)-7hat(j) ; 16hat(i)-19hat(i)-4hat(k) ; 3hat(i)-6hat(k) ; 2hat(i)-5hat(j)+10hat(k) are co-planar

Show that the points whose position vectors are 2hat(i) + 3hat(j) - 5hat(k), 3hat(i) + hat(j) - 2hat(k) and 6hat(i) - 5hat(j) + 7hat(k) are collinear.

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

Show that the vectors are coplanar 2hat(i)+3hat(j)+hat(k),hat(i)-hat(j),7hat(i)+3hat(j)+2 hat(k)