Home
Class 12
MATHS
If vec(d)=lamda(vec(a)xxvec(b))+mu(vec(b...

If `vec(d)=lamda(vec(a)xxvec(b))+mu(vec(b)xxvec(c))+omega(vec(c)xxvec(a))and|vec(c)xxvec(a)|=(1)/(8)" then "lamda+mu+omega` is …………..

A

0

B

1

C

8

D

`8vec(d).(vec(a)+vec(b)+vec(c))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( III. Choose the odd man out : )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( IV. Choose the incorrect statement : )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( Choose the Correct or the most suitable answer from the given four alternatives : )|25 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

If vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b)xx(vec(c)xxvec(a))+vec(c)xx(vec(a)xxvec(b))," then "

If the volume of the parallelpiped with vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(c)xxvec(a) as coterminous edges is 8 cubic units, then the volume of the parallelepiped with (vec(a)xxvec(b))xx(vec(b)xxvec(c)),(vec(b)xxvec(c))xx(vec(c)xxvec(a))and(vec(c)xxvec(a))xx(vec(a)xxvec(b)) as coterminous edges is,

If vec(a)+vec(b)+vec(c)=0," then show that "vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xxvec(a)

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]

If vec(a),vec(b),vec(c) are coplanar vectors, show that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)

If vec(a)*vec(b)=vec(b)*vec(c),vec(a)=0, then the value of [vec(a),vec(b),vec(c)] is

Let vec(a),vec(b)andvec(c) be three non-coplanar vectors and let vec(p),vec(q),vec(r) be the vectors defined by the relations vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]),vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]),vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)])" Then the value of "(vec(a)+vec(b))*vec(p)+(vec(b)+vec(c))*vec(q)+(vec(c)+vec(a))*vec(r)=

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

For any non-zero vectors vec(a),vec(b)andvec(c),(vec(a)xxvec(b)).vec(c) is